Deformation microstructures observed in high strain rate deformed FCC metals

Bryan Miller
September 30, 2004
Overview

- Types of Structures
 - Dislocation cell structures
 - Deformation twinning
 - Microbands

- Effected by:
 - Grain size
 - Stacking fault energy (SFE)
 - Strain Rate
 - Temperature
Cell Structures

- Prevalent at low temperatures & low strain, high strain rates
- Increased propensity as grain size decreases

Deformation Substructures as Function of Strain

- Polycrystalline OFHC Copper
- 40 µm average grain size

Deformation Twinning

- Prevalent in FCC metals deformed at low temperatures or high strain rate
- Strong dependence on SFE: Lower SFE → more twinning

Critical Twinning Pressure

- Decreases with increased temperature
- Decreases with increased strain rate
- Decreases with large grain size

Figure 1 Stacking-fault free energy (SFE) versus critical twinning pressure (CTP) for some fcc metals and alloys. (After Murr [13]).
Effect of grain size on deformation twinning

Microbands

- Double dislocation walls ~200 nm apart. Carries shear strain.
- 2-3° misorientation with matrix
- Not dependent on crystal structure, material properties, or strain level
- Strong stacking fault energy dependence???

Formed from Orowan loops, cross-slip mechanisms or interaction of primary and cell boundary dislocations (depending on who you believe!!!!)

Micro-bands & Deformation Twins

Deformation twin – microband transition mechanism unclear

Summary

- Cell structures dependent on grain size, strain rate and temperature.
- Deformation twinning strongly dependent on grain size, temperature and SFE.
- Microbands seemingly dependent on SFE alone.